
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    2019 
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org a 

Estimation of Speed and Area of High Speed Multiplier Designed using Booth-Wallace 
Unit Add Method 

 
Vikram Singh 

PG Student (M.Tech. VLSI,  Deptt. of E & CE) 
Laxmi Devi Institute of Engineering & Tech. 

Alwar, Rajasthan 
Vicky25engg11@yahoo.com 

 

Manish Kumar Jain 
Assistant Professor (Deptt. of E & CE) 

Laxmi Devi Institute of Engineering & Tech. 
Alwar, Rajasthan 

Manishjain1977@gmail.com 

 Abstract— Multiplier is the most important 
element of the digital signal processing such as 
filtering and convolution and hence their speed 
and area are of prime concern. A FIR is 
accomplished by repetitive application of 
multiplication and addition, their speed becomes 
a major factor which determines the 
performance of the entire calculation. In our 
paper we presented a high performance 
multiplier and then implementing them on FIR. 
By comparing a few multipliers we get the best 
solution to optimize the speed and area. 
In this paper we presented the efficient 
implementation of high speed multiplier using  
Array, Booth, Booth - Wallace (16 bit) method. 
Finally the performance improvement of the 
proposed multipliers is validated by 
implementing a higher order FIR filter.   

General Terms: Finite Impulse Response (FIR), 
Adders, Multipliers, Filters 
 Keywords: Array, Booth Encoder, Booth-Wallace. 

I. INTRODUCTION 
As we know that integration technology is growing 
day by day, more and more sophisticated signal 
processing systems are being implemented using 
VLSI chip. The multiplier is an essential element of 
the digital signal processing such as filtering and 
convolution and hence their power dissipation and 
speed are of prime concern. However speed and 
area are two conflicting constraints. So improving 
speed results always in large areas. Many research 
efforts have been devoted to reducing the power 
dissipation of different multipliers. The largest 
contribution to the total power consumption in a 
multiplier is due to generation of partial product. So 
in our thesis we have tried to present a new 
multiplication technique in which we will generate 

the partial products using Booth encoder and then 
the addition of these partial products are obtained 
using unit add method based on Wallace tree  adder.  
A FIR is accomplished by repetitive application of 
multiplication and addition, their speed becomes a 
major factor which determines the performance of 
the entire calculation. In our paper we develop a 
high performance multiplier and then implementing 
them on FIR. By comparing a few multipliers we get 
the best solution to optimize the speed 

II. PREVIOUS WORK 
Array multiplier 
In systolic multiplication, to carry out the 
multiplication and get the final product following 
steps should be followed 
1. The multiplicand and multiplier are arranged in 
the form of array as shown in the Fig. 2. 
2. Each bit of multiplicand is multiplied with each 
bit of multiplier to get the partial products. 
3. The partial products of the same column are 
added along with carry generated. 
4. So the resulted output by adding partial products 
and the carry is the final product of the two binary 
numbers. 

 
Fig. 1 Multiplicand and multiplier are arranged in 

the form of array [5] 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    2020 
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org a 

 
Fig. 2 Functional units of the 4 bit Systolic 

Multiplier [5] 
Each unit is an independent processing unit. These 
units share information with their neighbours, after 
performing the needed operations on the data. Each 
box in the Fig. 2 represents a full adder. Inputs are 
vector X and Yare ANDed and the AND outputs are 
fed as input to full adder, which gives rise to two 
outputs. One is the actual multiplied output vector Z 
and another one is the carry generated from the 
addition of the AND output, which is further used 
by other full adders. In this way computation takes 
place simultaneously in the rows and columns. All 
the inputs are applied simultaneously, therefore 
registers are not required. Availability of inputs at 
the start of the computation and the systolic array 
structure helps the multiplier to perform faster 
compared to other multipliers. 

Booth multiplication algorithm  
Booth algorithm gives a procedure for multiplying 
binary integers in signed –2’s complement 
representation.  
It will illustrate the booth algorithm with the 
following example:  
Example, 2 ten x (- 4) ten  
0010 two * 1100 two  

STEP 1: MAKING THE BOOTH TABLE. 
I. From the two numbers, pick the number 
with the smallest difference between a series of 
consecutive numbers, and make it a multiplier.  
i.e., 0010 -- From 0 to 0 no change, 0 to 1 one 
change, 1 to 0 another change, so there are two 
changes on this one 1100 -- From 1 to 1 no change, 1 to 0 
one change, 0 to 0 no change, so there is only one change on 
this one.  

Therefore, multiplication of 2 x (– 4), where 2 ten 
(0010 two) is the multiplicand and (– 4) ten (1100two) 
is the multiplier.  
II. Let X = 1100 (multiplier)  

Let Y = 0010 (multiplicand)  
Take the 2’s complement of Y and call it –Y  

     –Y = 1110  
III.       Load the X value in the table.  
IV. Load 0 for X-1 value it should be the  
previous first least significant bit of X  
V. Load 0 in U and V rows which will have the 
product of X and Y at the end of operation.  
VI. Make four rows for each cycle; this is 
because we are multiplying four bits numbers.  
 

 
TABLE 1 

MAKING OF BOOTH TABLE 
Step 2: Booth algorithm  
Booth algorithm requires examination of the 
multiplier bits, and shifting of the partial product. 
Prior to the shifting, the multiplicand may be added 
to partial product, subtracted from the partial 
product, or left unchanged according to the 
following rules:  
Look at the first least significant bits of the 
multiplier “X”, and the previous least significant 
bits of the multiplier “X - 1”.  
I. 0 0 Shift only  

1 1 Shift only.  
0 1 Add Y to U, and shift  
1 0 Subtract Y from U, and shift or add (-Y) 
to U and shift  

II. Take U & V together and shift arithmetic 
right shift which preserves the sign bit of 2’s 
complement number. Thus a positive number 
remains positive, and a negative number remains 
negative.  
III. Shift X circular right shift because this will 
prevent us from using two registers for the X value. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    2021 
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org a 

 
TABLE 2 

SHIFT IN BOOTH TABLE 
Repeat the same step until the four cycles are 

completed. 

 
TABLE 3 

PARTIAL PRODUCTS 

 
TABLE 4  

ADDITION OF PARTIAL PRODUCTS 

 
TABLE 5  

AFTER FINAL SHIFT 
After finishing four cycles, so the answer is shown, 
in the last rows of U and V which is: 11111000 two  
Note: By the fourth cycle, the two algorithms have 
the same values in the Product register. 

IV. PROPOSED WORK 
Wallace Tree 
In a Wallace tree multiplier the addition of bits 
within one column is rearranged still further. Let’s 
first re-visit the columns involved in the 
computation of a product. Each column is 

characterised by the inputs to that column, and the 
outputs from that column. 
The inputs to a column are the bits of the partial 
product (Booth or non-Booth encoded) plus the 
carry bits from one column to the right plus the sum 
bits that are generated within the column. The 
outputs from a column are the carry bits to the 
column one to the left plus the last two sum bits in 
that column that are passed to the CLA. All bits 
from partial products are available at the same time. 
So in the Wallace tree multiplier we use a tree of 
adder cells. The carry in comes CSA fashion from 
the previous column. The carryout goes from CSA 
fashion to the next column. In comparison to the 
basic array multiplier, the delay from partial 
products to final sum bits in a column is O(ln(n)) 
rather than O(n). 

 
Fig. 3 Wallace tree using full adder [7] 

The speed is limited by the number of full adders 
that the first partial product has to go through. 
Wallace noticed that A+B+C+D=(A+B)+(C+D). 
The carry save adder approach adds the partial 
products sequentially: the first two partial 
products are added before the third partial product 
is added. A+B+C+D require three full adder 
delays. Partial product A and B, C and D can be 
added at the same time. Their results are then 
added together. This requires only two full adder 
delays. Figure shows the difference in two 
approaches. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    2022 
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org a 

 
Fig. 4 Parallel adder tree [7] 

So on the basis of this we use a unit adder instead of 
using full adder. Each unit adder adds four data 
inputs and one carry input. It generates one sum bit 
and two carry outputs.  
Fig. 5 shows the unit adders organization for adding 
eight partial products. Note that the first two rows 
of unit adders add partial products. The first row 
unit adders add partial products P4, P3, P2 and P1. 
The second row of unit adders add partial product 
P8, P7, P6 and P5. The third row of unit adders 
adds the sum outputs from the first two rows and 
the carry bits from the unit adders in the right 
column. 

 
Fig. 5 Unit adder organization for eight partial 

products [7] 
Booth- Wallace tree multiplier 
Now we can put the suggestion by booth and 
Wallace together. The partial products are generated 
with booth recoder. The partial products are added 
with the Wallace tree adder, similar to the case of 
carry save adder approach. The last row of carry 
and sum outputs is added together with the carry 
skewed to the left by one position. Fig. 6 shows a 
16×16 multiplier, using booth recoder and Wallace 
tree adders. The multiplicand comes from the left to 
go into eight booth recoders. Each recoder takes 3 
bits from the multiplier with ‘0’ appended at the 
right end. The recoder has a 17-bit output. Each 
recoder output is shifted to its correct position, sign 
extended, and zero filled in the right end. There are 
three rows of unit adders. Each row has 32 unit 

adders. The carry and sum outputs of the last row 
are added with the carry output bits shifted left one 
bit position to add with the sum bits. The output of 
the adders forms the product. 

 
Fig. 6 Booth- Wallace tree 16×16 multiplier [7] 

V. RESULTS 
We have done the coding in VHDL of multipliers 
discussed above. The VHDL codes of different 
multipliers are synthesized on Xilinx ISE 12.1 and 
simulated using Xilinx ISE simulator. The device 
utilization summary obtained from synthesis report 
is used to compare the different multipliers.  
As we know that LUTs is proportional to the area 
occupied by the multipliers on VLSI chip and path 
delay is inversely proportional to the speed of the 
multiplier.  
Then these multipliers are implemented separately 
with FIR filters using computation technique like 
FFT, DFT. These coding are also written in VHDL 
language and simulate it to get the RTL circuit of 
each system. Also get the lookup table, where we 
get the exact no of i/p, o/p/ no of slices requirement 
etc for the system. Xilinx Power Estimator is used 
to analyze & determine the power consumption of 
the system. These results are given below. 

 
Synthesis report of different multipliers 

Device Utilization Summary (estimated values) 
Logic Utilization Used Available Utilization 
Number of Slices 70 960 7% 
Number of 4 input 

LUTs 121 1920 6% 

Number of bonded 
IOBs 32 66 48% 

TABLE 6 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    2023 
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org a 

SYNTHESIS REPORT OF ARRAY MULTIPLIER 
Maximum combinational path delay: 26.048ns 

Device Utilization Summary (estimated values) 
Logic Utilization Used Available Utilization 
Number of Slices 50 768 6% 
Number of 4 input 

LUTs 94 1536 6% 

Number of bonded 
IOBs 33 63 52% 

TABLE 7 
SYNTHESIS REPORT OF BOOTH MULTIPLIER 

Maximum combinational path delay: 16.552ns 
Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 
Number of bonded 

IOBs 64 63 101% 

Number of 
MULT18X18s 1 4 25% 

TABLE 8 
SYNTHESIS REPORT OF BOOTH-WALLACE 

MULTIPLIER 
Maximum combinational path delay: 13.024ns 

 
Synthesis report of FIR designed using different 
multipliers 
Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 62 768 8% 

Number of Slice Flip 
Flops 38 1536 2% 

Number of 4 input 
LUTs 115 1536 7% 

Number of bonded 
IOBs 26 63 41% 

Number of GCLKs 1 8 12% 

TABLE 9 
SYNTHESIS REPORT OF FIR DESIGNED USING 

ARRAY MULTIPLIER 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 54 768 7% 

Number of Slice Flip 
Flops 41 1536 2% 

Number of 4 input 
LUTs 99 1536 6% 

Number of bonded 
IOBs 26 63 41% 

Number of GCLKs 1 8 12% 

TABLE 10 
SYNTHESIS REPORT OF FIR DESIGNED USING 

BOOTH MULTIPLIER 

Device Utilization Summary (estimated values) 

Logic Utilization Used Available Utilization 

Number of Slices 73 768 9% 

Number of Slice Flip 
Flops 64 1536 4% 

Number of 4 input 
LUTs 90 1536 5% 

Number of bonded 
IOBs 50 63 79% 

Number of GCLKs 1 8 12% 

TABLE 11 
SYNTHESIS REPORT OF FIR DESIGNED USING 

BOOTH- WALLACE MULTIPLIER 
Comparison of FIR designed using different 
multipliers 

Logic Utilization Array  Booth Booth- 
Wallace  

Number of Slices 62 54 73 

Number of Slice Flip 
Flops 38 41 64 

Number of 4 input 
LUTs 115 99 90 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013                                                                    2024 
ISSN 2229-5518 

 

IJSER © 2013 
http://www.ijser.org a 

Number of bonded 
IOBs 26 26 50 

Number of GCLKs 1 1 1 

Maximum 
Combinational Path 

Delay 
26.048ns 16.552ns 13.024ns 

TABLE 12 
COMPARISON OF FIR DESIGNED USING DIFFERENT 

MULTIPLIERS 
VI. CONCLUSION 

In this paper, a unit add method based on Wallace 
tree was proposed for multiplication in which 
partial products are generated using booth encoder. 
The device utilization summary obtained from 
synthesis report, shows that Booth multiplier has 
less number of LUTs as compare to array multiplier 
which shows Booth has less area in comparison to 
the array multiplier.  
By simulating the proposed Booth- Wallace 
multiplier we found that Maximum combinational 
path delay in this multiplier is 13.024ns, which is 
very less as compare to other multipliers. This 
technique performs the multiplication of 16 bit. 
When we compare the path delay and LUTs of 
Booth encoder and Wallace unit adder with other 
multipliers, we found that this method is better than 
other multipliers in terms of speed and area. So by 
using Booth-Wallace multiplier we can achieve the 
fast and efficient multiplication. 

 
REFERENCES 

[1] Anand Kumar., “Fundamentals of Digital 
Circuits”, Prentice Hall of India, 2008. 

[2] Volnei A. Pedroni., “Circuit Design using 
using VHDL”, MIT Press, 2004. 

[3] Morris Mano,“Digital Design, Third 
edition”, Prentice Hall of India,  2000. 

[4] Marcelo Fonseca, Eduardo da Costa et al., 
“Design of a Radix-2 Hybrid Array 
Multiplier Using Carry Save Adder”, in 
SBCCI’05 proc. of the annual symposium on 
integrated circuits and system design, pp. 
172-177, 2005. 

[5] Bairu K. Saptalakar et al., “Design and 
Implementation of VLSI Systolic Array 

Multiplier for DSP Applications”, in 
International Journal of Scientific 
Engineering and Technology (ISSN : 2277-
1581), Vol. 2 Issue 3, pp. 156-159,2013. 

[6] S. Karunakaran et al., “Area and Power 
Efficient VLSI Architecture for FIR Filter 
using Asynchronous Multiplier”, in British 
Journal of Science, Vol. 2, pp. 61-77, 2011. 

[7] C. S. Wallace., “A Suggestion for a Fast 
Multiplier”, in IEEE Trans. on Electronic 
Computers, vol. 13, pp. 14-17, 1964.   

[8] D. Baran et al., “Energy Efficient 
Implementation of Parallel CMOS 
Multipliers with Improved Compressors”, in 
publication of IEEE conference on Low-
Power Electronics and Design (ISLPED), 
pp. 147-152, 2010. 

[9] Soojin Kim et al., “Design of High-speed 
Modified Booth Multipliers Operating at 
GHz Ranges”, in World Academy of 
Science, Engineering and Technology,  
2010. 

[10] Dong-Wook Kim, Young-Ho Seo., “A New 
VLSI Architecture of Parallel Multiplier-
Accumulator based on Radix-2 Modified 
Booth Algorithm”, in IEEE Trans. On Very 
Large Scale Integration (VLSI) Systems,  
vol. 18, pp. 201-208, 2010. 

[11] Raminder Preet Pal Singh et al., 
“Performance Analysis of 32-Bit Array 
Multiplier with a Carry Save Adder and with 
a Carry-Look-Ahead Adder”, in 
International Journal of Recent Trends in 
Engineering, Vol 2, No. 6, 2009. 

IJSER

http://www.ijser.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5593943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5593943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5593943
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5593943

	 Keywords: Array, Booth Encoder, Booth-Wallace.
	I. Introduction
	Booth multiplication algorithm 
	Step 1: Making the Booth table.



